两大因素影响光伏项目的平价上网

太阳城app

How to define the parity of the PV project?

Personally think that it can be considered in three levels. First of all, it is necessary to clarify the price of the standard electricity, and the grid price can obtain reasonable economic benefits. China's electricity price is divided into on-grid electricity price (desulfurization coal benchmark electricity price) and sales electricity price (residential electricity price, large industrial electricity price, industrial and commercial electricity price), and the value of different electricity prices varies greatly.

For distributed projects, the target price is the sales price, that is, the residential electricity price, the large industrial electricity price, and the industrial and commercial electricity price. These three types of electricity prices are relatively high, so distributed projects are easier to achieve parity online. For the ground power station project, the benchmark is the on-grid price, that is, the desulfurization coal benchmark price. The ground power station can obtain reasonable income by connecting the “desulfurization coal benchmark price” of the project site, that is, achieving a cheap Internet access.

Secondly, the photovoltaic output is unstable due to the influence of solar energy resources, and the output can be controlled with the energy storage system. If the price of controllable clean electricity for “photovoltaic + energy storage” is comparable to conventional energy, a second level of parity is achieved.

Third, with the advancement of power reform, the future power market will achieve 100% spot trading, then there will be no stable “desulfurization coal benchmark price” in the market, and photovoltaic power is competitive and competitive as a kind of ordinary power. At this time, it is the "fee free online" in the true sense.

Factors Affecting Photovoltaic Electricity Costs: The parity Internet access discussed at this stage is mainly based on the fact that the ground photovoltaic power station is connected to the grid with “desulfurized coal benchmark electricity price” and has reasonable profits. The desulfurization coal benchmark price is relatively low, which requires the photovoltaic project's electricity cost (LCOE) to be further reduced. In the calculation of the electricity cost, it involves the initial investment of the project, the residual value of the fixed assets, the operating cost of the nth year, the depreciation of the nth year, the interest of the nth year, the power generation of the nth year, and the discount rate.

Among the above factors, the two factors that have the greatest impact on photovoltaic power costs are: initial investment and annual power generation. These two points will be discussed primarily below.

xxThe decline in initial investment has contributed to the reduction of LCOE

Since the first batch of photovoltaic concession bidding in 2009, the photovoltaic industry has officially entered the stage of market operation. In the past 10 years, the decline in photovoltaic power costs has mainly come from the decline in “initial investment in projects”. In 2011~2018 alone, the price of PV modules and inverters has dropped by more than 75%. Driven by this, system costs have dropped by about 72%.

The difference between the pieces, the EPC project winning price is concentrated between 4~5 yuan/W.

In the future, there will still be some room for decline in the initial investment in PV projects. In 2011~2018, although PV modules and inverters fell by more than 75%, the investment in "component + inverter" accounted for 50% of system investment.

The decline of the photovoltaic system's BOS (Balance of System) is mainly due to two aspects: on the one hand, component efficiency is improved, and engineering design is optimized; on the other hand, the price of photovoltaic modules also has a certain room for decline.

1. Increased component efficiency drives down initial investment

The higher the efficiency of the PV module, the lower the cost of BOS. The increased efficiency of photovoltaic modules can drive down the cost of BOS, mainly because many investments in photovoltaic systems are area-dependent.

The higher the component conversion efficiency, the smaller the average area of a single watt, and the lower the area-related partial investment. After calculation, the 60-piece PV module will increase the power by 10Wp, and the BOS cost will drop by 5~7 points/Wp. Driven by the front-runner project, battery conversion efficiency has increased rapidly, with the latest efficiency record reaching 24.2%. The output power of N-type half-chip components (60-cell batteries) is as high as 387.6W. At the end of 2019, 315Wp components are expected to be widely used. Therefore, this will push the cost of BOS to further decline.

2. Design optimization drives down initial investment

xx许多新设计概念和技术的应用也降低了BOS的成本。更具代表性的设计优化概念如:1500V系统应用,超匹配概念的推广,最优倾斜角度的优化,实现经济优化等。

(1)1500V系统的应用

在2018年推出的第三组跑步者中,1500V系统已被广泛使用。

与1000V系统相比,连接到1500V系统的部件数量增加,并且单个发电单元的尺寸增加,这可以降低单瓦特的成本。主要区别在于桩基的数量,DC收敛后的电缆长度以及组合器的数量。同时,电压上升。高线和短线减少了直流线损。此外,组件的效率增加并且电压水平增加。这促进了设计中发电机组从1MW扩展到2.5MW,从而减少了工程量。经过计算,与1000V系统相比,1500V系统可以节省3~4个点/W,只有桩基和电缆。

由于良好的初始投资减少,1500V系统受到全球光伏平价趋势的青睐。根据IHS的统计,大型地面电站的比例,1500V系统的比例逐年增加。

(2)推广过度设计理念

与逆变器过度供应相比,即“容量比”> 1“,该组件可以降低电力成本。根本原因是这种设计可以提高交流侧设备的利用率。

格尔木是该国最好的太阳能城市之一。在大多数情况下,格尔木的太阳辐照度低于800W/m2。当温度为25°C时,PV模块的输出通常为额定功率的80%。如果再次考虑系统效率,则到达逆变器的功率长时间小于组件额定功率的70%。因此,当根据1: 1配置组件和逆变器时,逆变器及其后面的设备的利用率长时间小于70%。

当比率> 1时,即,当部件的额定功率大于逆变器时,虽然功率限制在一小部分时间内发生,但投资的约30%的利用率大大增加,从而降低LCOE。随着组件价格的下降和效率的提高,DC侧的投资比例下降。容量与AC利用率的比率增加更为明显。

(3)经济最佳倾角的设计理念

在这种情况下,26°是经济收益的最佳倾向。

国外一些土地成本较高的项目甚至采用了光伏组件的“人字形”设计,以降低土地成本,寻求经济上最优的解决方案。

除了上述几种优化设计理念外,智能设计软件得到了广泛的应用,使各种电缆和钢材的计算更加准确,减少了冗余量,节省了辅助材料的成本。

3.零部件价格下跌导致初始投资下降

根据新疆大全2018年的财务报告,2018年底硅材料的现金成本和全部成本分别相当于44.6元/公斤和53.3元/公斤。这与目前80元/公斤硅材料的价格有一定的价格差异。未来,随着国内硅材料产能的大规模生产,硅材料价格仍有一定的下滑空间。根据不同企业的供需形势和成本,优质硅材料的价格应保持在每公斤75元左右。

在硅晶片领域,减薄的趋势是显而易见的。单晶模块中1kg硅材料的数量从58增加到64,这可以降低单晶圆的成本。

此外,高效的应用可以显着降低包装组件的成本。随着电池价格的降低,组件的包装成本也在增加。目前,单个60片组件的包装成本,保险和运输成本约为237元/块,不同效率组件共用的单瓦包装成本差异很大。

根据前面的分析,随着技术的进步,光伏组件的价格有一定的下降空间;组件效率,设计优化等,将降低系统的成本。一般来说,2019年的系统成本有一个约0.5元/W的下行空间。2018年,单独的光伏组件价格下降了约0.8元/W.因此,虽然未来的初期投资仍有一定的下降空间,但非常有限。未来,LCOE的下降将主要通过“增强发电”来实现。

增加发电量可提高LCOE减少量

最近,越来越多地使用诸如双面部件,跟踪支架和智能操作和维护的技术来增加项目产生的电量。

1.双面组件的应用

在第三组领先者中,双面组件的应用率约为30%。关于双面组件发电量的增加,第三方认证机构和企业已经开展了大量的研究工作。双面组件发电量的增加受到许多因素的影响。包括:表面反射率,部件离地间隙,工程现场坐标等。根据公布的经验数据,双面组件的背面可以在不同情况下将发电量增加5%至25%。

目前,双面组件的价格比普通组件高约0.1元/W,即投资增加2%至3%;如果发电量增加超过5%,则可以显着降低电力成本。

2.跟踪支架

跟踪支架可以大大增加发电量,直接比越高,发电效果越明显。目前,最成熟和最广泛使用的技术是扁平单轴跟踪技术。对于第三批前沿项目,当使用扁平单轴跟踪支架时,进行发电水平的理论计算。

发电比例与直接比率之间存在良好的相关性。在不同地区,增长率高于10%。此外,相对于固定类型,平坦单轴跟踪的占地面积没有显着增加。根据国土资源部颁发的《光伏发电站工程项目用地控制指标》,当使用转换效率为18%的光伏组件时,土地利用控制指标根据不同安装形式的占地面积而有所不同。

与固定型相比,扁平单轴的占地面积不会显着增加,但在高纬度区域会减小。因此,扁平单轴跟踪支架技术成熟,可以将发电量提高10%以上,但不会显着增加占地面积。

3.智能操作和维护技术

早期光伏电站的运营和管理水平相对较低。发电站的系统效率仅在70%至80%之间,平均水平约为78%。随着越来越多的发电厂进入运营阶段,一系列现代技术应用于发电站。

光伏电站连接到智能运维平台,每个电站通过平台的大数据分析进行诊断。例如,当灰尘堵塞导致发电站的发电显着减少时,将启动自动清洁设备,并且将及时进行清洁以减少发电损失。对于电站故障,它也可以及时发现和报警,无人机可以巡逻和定位。及时消除故障以减少发电损失。

因此,具有智能设备和现代技术的智能监控平台可以显着提高项目的系统效率。目前,光伏电站的系统效率基本可以达到81%以上。

综上所述,双面组件,平板单轴跟踪技术,智能运维综合应用,虽然项目投资将增加约15%,但可以将发电量增加25%以上,从而可以大幅减少该项目的LCOE。

通过以上分析,未来光伏组件的价格仍有下降空间。高效的组件和设计优化可以进一步减少初始投资;跟踪技术,双面组件以及智能操作和维护可以显着增加发电量。在过去10年中,LCOE主要通过初始投资的初始下降实现,并将主要通过未来发电量的增加来实现。

其中,双面元件,平面单轴跟踪技术和1500V系统的综合应用可以大大降低工程的LCOE;未来两到三年,它可能是应用比例最快的三种技术。